Take that, personality test!

Collecting clams with my canine field assistant.
Collecting clams with my canine field assistant. Science involves a lot of “alone” time, and in this case, some frisbee-throwing.

In my second year of grad school I attended a seminar on personality, offered by William and Mary’s counseling office. I think the idea was to allow us to understand some of the reasons we find different situations challenging, since let’s face it, grad school is one big challenge and it helps to understand why we feel stressed or inadequate in certain situations. We were all asked to take the Myers-Briggs personality test in advance, which classifies you into a four letter code based on your answer to a series of questions. My code was an INTJ, which I have to admit fits me pretty well- I am an introvert, drawing energy from alone time and benefiting from time to think. I am fairly intuitive, and grasp large theories and ideas much quicker than details. I am a thinker, and I like to think things through logically, and will rarely follow through only on a “gut feeling”. Lastly, I fit into the “Judging” category (very strongly, I might add), because I prefer to make and stick with plans. It stresses me out to leave things to chance.

While the test clearly can’t encompass the entirety of human behavior, it can be helpful to explain why we feel the way we do in certain situations. For instance, in graduate school I realized that I was almost never able to raise my hand and answer questions first. It made me anxious that I was starting to fall behind, that I was not able to think and to come up with answers as well as my classmates. However, I learned that introverts frequently need more time to think things through before answering a question, so I don’t really worry about this aspect of my personality any more.

Me banding a bluebird nestling. See, I'm capable of attention to det... oh look! An eagle!
Me banding a bluebird nestling. See, I’m capable of attention to det… oh look! An eagle!

One thing that became abundantly clear in this seminar was that most of the scientists in the room fell into one category- ISTJ. These types are very similar to me, but with more attention to detail. About half of the graduate students fell into this category, and the rest of the students were just variations on this theme: ESTJ (extroverts, always the ones with their hands in the air first :) ), ISTP (very similar to ISTJs in the science field), or even myself, INTJ, stringing together big-picture ideas on the spot and then going home to make notecards to remember the little things that come so easily to ISTJs, like the names of authors or mathematical equations. I think ISTJ fits with the traditional image of a scientist- a nerdy loner on the quest for answers, always up to their eyeballs in obscure data- but the more I learn of what it takes to be a scientist, the more I am amazed that so many scientists have these characteristics.

Aww, look at those grad students trying to be social! Just kidding, my labmates and I always have a great time.
Aww, look at those grad students trying to be social! Just kidding, my labmates and I always have a great time.

Starting with the first letter in the personality test: the spectrum of I to E, introverts to extroverts. I think it is safe to assume that most scientists are introverts. I can’t speak to what it will be like in the later stages of my career, but I know that being a graduate student in science involves a lot of alone time. You must forge ahead on your own research project, oftentimes with very little help. However, increasingly scientists are called upon or even expected to exhibit very extroverted behaviors in order to succeed in their fields. These include increasing activity in the social sphere, not only on the web (through blogs, which is probably not too hard for most introverts), but in public (*shudder*). Scientists, just like everybody else, find jobs through networking, but I think for us the networking is best done face-to-face, which really throws us out of our comfort zone. A resume does not impress a potential collaborator as much as a discussion of new ideas. This can be extremely nerve-wracking for graduate students, who feel as though they must study a prospective employer’s current body of work, come up with a novel idea or a new direction to build off what this distinguished individual has already done, and convince this professor that you can add to their work and that they need you in their already under-funded lab, usually while you are at a conference and are already feeling very drained from all of the social interaction. Talk about being out of your comfort zone! It is no wonder that at most conferences, when I am interacting with a group of graduate students, we repeat the same tired conversation about the best way to approach scientists in a social situation. None of us know how, we just know that somehow this is a skill we will have to learn to get a job. A cover letter would be so much easier.

NSF EAPSI 2014 fellows at our orientation in Canberra.
NSF EAPSI 2014 fellows at our orientation in Canberra. Ready to engage in some international collaboration!

This leads me to my current activities as an international fellow at Macquarie University in Sydney. International collaborations such as this one are fantastic for my career. I get to expand the scope of my research, meet new people, gain a new perspective on science and environmental issues, and hopefully forge new collaborations that will make myself and my new friends at Macquarie University more competitive in marine science. In addition, I am truly loving my time in Australia, and I am making so many memories that will stick with me. However, my work here is really fantastic at putting me out of my comfort zone. I have planned an international research project involving field work in a system I do not know, for completion in facilities I do not know, with people I have never met. As a person who loves order, and making plans that do not change, the logistics have been a nightmare. Tomorrow I am driving four hours on the opposite side of the road, with three undergraduate volunteers, to a system I have never visited, to collect a species I have never collected before. I have no idea what I will find when I get there. I do however, know a couple of things to be true. First, I have prepared to the point that I know I will be able to make tomorrow a meaningful part of my experience in Australia, even if things go wrong. Second, I am going to leave my comfort zone behind, and as I have done many times in my career path as a marine ecologist, I am going to have the time of my life, showing myself I can overcome challenges to do something I never thought I would be able to do. Take that, personality test.

Great Barrier Reef in a Prickly Predicament

The Great Barrier Reef is arguably the largest living organism in the world. Arguably, because it is actually made up of billions of tiny organisms, that are themselves part animal, part plant, and part mineral. Coral polyps, the base unit of a coral reef, are colonial animals that look like teeny tiny anemones. Inside their skin they have algae that help them by making some extra food from sunlight. These algae are called xoozanthellae. The coral also secret a hard calcium carbonate skeleton, which (for hard corals at least) forms the base of the colony and helps the coral grow. Over thousands of year (8,000 to be exact) these tiny creatures have built a structure that can be seen from space. I have dreamed of seeing the reef ever since I was a child, and am so excited I got to dive on the reef as part of the first few weeks of my 10-week stay in Australia.

Clowning around. Maroon clownfish in its anemone.
Clowning around.Maroon clownfish in its anemone.

After all of the time I have spent sitting in marine biology classes, I am well aware of all of the problems facing the Great Barrier Reef, including disease, pollution, and climate change, which causes the corals to lose their friendly algae, causing the corals to turn white, or “bleach”. However, after talking to some scientists at the Australian Institute of Marine Science this week, I have learned about another threat to coral reefs- starfish. A particular species of starfish, the crown of thorns starfish, is a very efficient predator of coral. In addition, it has a rather nasty habit of popping up every couple of decades in epidemic proportions. Nobody quite knows why, but it seems every 10 or so years the starfish show signs of increasing in numbers, and then are found everywhere on the reef, consuming coral and sending the Australian tourism business into episodes of head-hanging and hand-wringing anxiety.

A crown of thorns starfish lying in wait. They like to feed mainly at night. Like vampires.
A crown of thorns starfish lying in wait. They like to feed mainly at night. Like vampires.

As I mentioned, crown of thorns starfish are predators of coral. In fact, they are extremely effective and efficient predators of coral, perhaps even the perfect predator. Adult crown of thorns starfish start producing eggs when coral are getting ready to reproduce. Just as the corals are storing away extra nutrition for spawning, crown of thorns starfish come through and munch away at the extra-fat coral polyps, siphoning the food directly into their eggs. Then they release their eggs at the perfect time so that when the eggs hatch, the coral is spawning, releasing eggs and sperm into the water column that will serve as a buffet for the young crown of thorns starfish, which spend the first few days of their lives as plankton, drifting in the water and feeding on small things like coral eggs. Then when the crown of thorns starfish are adults, they continue to mow down the coral at a rate of 6 square meters per year. This doesn’t seem like much, but since they have millions of baby starfish each year, very few natural predators, and can live 6-8 years, they can consume quite a bit of coral. It is clear that this creature has evolved to become a very effective predator of coral, and it is understandable that people who depend on the reef for their livelihood are concerned about an outbreak of crown of thorns starfish.

Cassie and Cal being reef tourists.
Cassie and Cal being reef tourists.

What can be done? Some scientists are focusing on understanding what causes the starfish to reach epidemic proportions, so they can reverse or at least prevent outbreaks. One leading hypothesis is that pollution from land, especially extra nutrients, causes more young crown of thorns starfish to survive to adulthood, because there is more food for them. However, other scientists believe that crown of thorns outbreaks are simply natural phenonmenon that are caused by a slight change in water flow around the reef, which keeps more young starfish on the reef, instead of flushing them out to sea. Other researchers are focusing on an immediate fix for the crown of thorns starfish problem. They focus on developing a way to kill crown of thorns on the reef, and they have developed a lethal injection that will kill the starfish, but this method is expensive and would require a lot of man power. Other researchers are looking for deterrants or even attractants so we can keep starfish out of some areas or trap and remove them in large numbers. The trouble is that they will have to find an attractant/deterrant that works only for the crown of thorns, and not on any other starfish, because we are still concerned about keeping the other starfish that do not destroy the reefs healthy.

If this is likely a natural phenomenon, why should we care? While reefs may be able to bounce back from an outbreak of crown of thorns starfish, it is also just as likely that the other problems that plague the reef, including pollution, climate change, and other natural phenomena like storm events, may make it too difficult for coral to repopulate the reef. Certain coral species, and even certain reefs, may be lost.

So how likely is it that crown of thorns starfish will eat the Great Barrier Reef? The best coral reef scientists believe that the crown of thorns starfish numbers are increasing, and the last time this happened there was a severe outbreak within a few years, so many people are very concerned. I, for one, am glad I made it out to see the reef this year, and not a couple of years from now. The reefscape may look very different in just a few short years.

More pictures!

dive cam2 110
Whitetip reef shark, Triaenodon obesus
dive cam2 080
The giant clam, Tridacna gigas, which also has xoozanthellae in its skin.
dive cam2 070
Clown sweetlips, Plectorhinchus chaetodonoides.
dive cam 071
Sixbar angelfish, Pomacanthus sexstriatus.
dive cam2 044
These fuzzy things are WORMS! That’s right folks, the Great Barrier Reef even has pretty worms.
Moon wrasse (Thalassoma lunare) maybe?
Cassie on the reef.

Cassie on the reef.

Cal on the reef.
Cal on the reef.

Adventures with Acidification

This summer I will be traveling to Australia to complete a research project sponsored by the National Science Foundation. Photo of me after I heard the news. Photo by C Glaspie.
This summer I will be traveling to Australia to complete a research project sponsored by the National Science Foundation. Photo of me after I heard the news. Photo by C Glaspie.

This morning I am making my last few travel plans for my next big adventure. In less than three weeks I will be boarding a plane for Sydney, to spend 10 weeks exploring and studying one of the most unique places on earth. Since I will be posting a lot about my research in Australia, this week’s topic will be an introduction of one of my main research interests, which also happens to be a very complex and serious issue facing the world’s oceans: ocean acidification. Get ready, I’m about to bust out some chemistry.

Ocean acidification is the process of the oceans becoming gradually more acidic, due to increasing levels of carbon dioxide in the atmosphere. This is how it works. As we hear almost every day, atmospheric concentrations of CO2 are increasing at an alarming rate. This is the driver of climate change. More CO2 in the atmosphere means that more CO2 will come in contact with ocean surface waters, where gas exchange occurs. After CO2 is dissolved in water, it takes part in a number of reactions. The products of these reactions are carbonic acid, bicarbonate, and the carbonate ion. There is, however, one other important byproduct of these reactions. At each step, hydrogen ions are lost into the water. More hydrogen ions in a liquid means the liquid become more acidic. The result is a decrease in seawater pH, because a lower pH means a solution is more acidic. Under some scenarios, if the current rate of CO2 emissions continues, we can expect a decrease in pH of 0.4 units by the end of the century. While this may not seem like a significant decrease in pH, it actually represents a three-fold increase in hydrogen ions.

Image of a newly-hatched Pacific cod. IT is easy to see how a young fish can be very sensitive to changes in it's environment.
Image of a newly-hatched Pacific cod. IT is easy to see how a young fish can be very sensitive to changes in it’s environment.

Acid can harm many organisms in the ocean. Fish gills are very sensitive to acidity, and more acid in the blood stream is, as you can imagine, very stressful. The main concern is usually for young life stages of many ocean species, because young animals are usually more sensitive to changes in the environment. In addition to the direct effect of acid, there are other, potentially more harmful consequences of ocean acidification. For example, carbonate ions are a natural buffer for seawater. They are the Tums of the ocean- just as Tums help relieve extra acid in your stomach, carbonate ions help eliminate extra acid in the ocean. As ocean acidification continues, the result is a loss of carbonate ions from the ocean. By the end of the century, there may be 60% fewer carbonate ions in the ocean. This means there will be less “Tums” to rid the ocean of extra acidity.

I addition to acting as Tums, carbonate ions are one of the building blocks for shell material. As carbonate ions get used up to buffer acid in the ocean, there are less carbonate ions available for the animals that need them to build hard shells, such as crabs, clams, oysters, corals, and some plankton which form the base of the ocean food web. Not only will there be less material for them to use to build shells, but if the oceans get acidic enough shell material may even begin to dissolve away, just as Tums dissolve in your stomach. Hard shells protect and provide structure for these animals. If the shells weaken or dissolve, these animals cannot grow and are less likely to survive an attack by a predator.

Coral reefs are built on top of layers of hard shell secreted by the corals. This material is at risk of dissolving in acidified ocean water. Photo By U.S. Fish and Wildlife Service Headquarters (Coral Reef  Uploaded by Dolovis) [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons.
Coral reefs are built on top of layers of hard shell secreted by the corals. This material is at risk of dissolving in acidified ocean water. Photo By U.S. Fish and Wildlife Service Headquarters (Coral Reef Uploaded by Dolovis) [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons.
Despite the importance and complexity of this issue, relatively little research has been done on ocean acidification. Besides coral, which has been studied extensively, few species have been included in ocean acidification experiments. Many studies experiment with extremely low pH values which have dramatic effects on animals, but are unlikely to be seen in the oceans in the next century. Perhaps the greatest problem is the lack of long-term ocean acidification studies. Most of the research that has been done covers a period of less than 7 days. Such a short-term study is not adequate to understand the effects that ocean acidification may have over an organism’s lifetime, let alone the effect it might have on generations of animals that have a chance to adapt to change.

A photo of jarosite, a mineral that forms in acid-sulphate soils (soils acidified by iron and sulphides). Photo by Rodney Burton [CC-BY-SA-2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons.
A photo of jarosite, a mineral that forms in acid-sulphate soils (soils acidified by iron and sulphides). Photo by Rodney Burton [CC-BY-SA-2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons.
There are some places in the world that are already experiencing acidification on a small scale, due to a variety of natural (and sometimes unnatural) phenomena. This acidification occurs in polluted bays, at carbon dioxide seeps, around deep-sea volcanoes, and on the East coast of Australia, where acidic soil rinses acid into coastal waters. In Australia, acidification from acid soil is a natural process that has been going on for the last 10,000 years. The acidic soils form when iron-rich sediment is exposed to seawater, which then evaporates or recedes and leaves behind sulfide, a substance that is naturally found in seawater. The sulphide combines with iron to form iron-sulphide sediments. When this sediment is dried out and exposed to oxygen, the iron sulphides undergo a chemical reaction to form sulphuric acid. Then every time it rains or the tide comes in, all of that sulphuric acid is washed into the coastal water. The animals that live there must find a way to adapt to the acid in the water, or they will die.

Sydeny rock oysters, the species I will be studying while in Australia. Photo from Wikimedia Commons, by Stevage.
Sydeny rock oysters, the species I will be studying while in Australia. Photo from Wikimedia Commons, by Stevage.

While I am in Australia I will be taking a look at the communities of oysters living in the acidic bays and estuaries near Sydney, to see if they have been able to adapt to the long-term acidification of Australian coastal waters. Since my interests lie in predator-prey interactions, I will be looking at how oysters and crabs interact, and whether oyster shells are weaker and result in more acidified oysters being eaten by crabs. This study in Australia will serve as a natural experiment to help scientists understand the effect of the slow process of ocean acidification on animals as they adapt to their environment from generation to generation. It is important to understand the effects of ocean acidification because if some shellfish species are going to have a hard time, commercial shellfish farmers and harvesters may find their livelihoods threatened. Fisheries aside, plenty of animals have shells. These animals are an important component of the food web, and figuring out which ones are likely to disappear from the ocean will help us to predict if there will be large changes to the flow of energy in the ocean.

In the meantime, I will share some stories about my research and my travels in Australia this summer. Australia is full of unique landscapes and creatures, so I will undoubtedly have some cool facts that I pick up along the way, and share with all of you on my blog. Stay tuned for some adventures on the reef and in the mangrove.

Photo of a goblin shark captured in Japan.

Goblins and isopods and whales, oh my!

Head of a goblin shark. By Dianne Bray / Museum Victoria [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)]
Head of a goblin shark. By Dianne Bray / Museum Victoria [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)]
Last week the discovery of a goblin shark in the Gulf of Mexico made headlines. This is only the second record of a goblin shark in the Gulf of Mexico. The goblin shark is a deep-sea species that is very rare. Most specimens come from Japan, but even there it is still not common. Scientists know almost nothing about this shark, including why it looks the way it does, how old it gets, how large it gets, or anything about goblin shark reproduction. Until 2000, when the first Gulf of Mexico goblin shark was caught, scientists didn’t even know it existed in the Gulf of Mexico. This truly was an amazing discovery, but then researchers started looking closer at the fisherman’s catch.

Underside of a deep-sea isopod captured from the Gulf of Mexico.
Underside of a deep-sea isopod captured from the Gulf of Mexico.

If you look closely at the photos of the catch, you may notice some giant creatures that look like lobster tails or pill bugs. These are deep-sea isopods, and they are about the size of a house cat. Since I have an unreasonable fear of cockroaches, these isopods naturally give me the heeby-jeebies, but there is no doubt that they are cool. These isopods are not really uncommon, but they are never found in such large numbers unless a really tasty food source is around, and such decadence is hard to come by in the deep sea. This led some scientists to suggest that the fisherman’s trawl net may have passed over something very rare and very interesting- a whale fall.

A whale fall is what happens after a whale dies. Sometimes whales float for a while after they die, but they all inevitably sink. Even most beached whales are eventually dragged out to sea to sink. Whales rest at the bottom of the ocean and provide an opportunity for lots of food in a landscape that normally does not have any. As a result, whale falls draw a number of unique species, including some that live around very rare deep-sea habitats like hydrothermal vents and cold seeps. They also draw some species that specifically feed on bone, meaning they can only be found at whale falls. This video is a great artistic representation of what happens in the deep sea when a whale arrives.

Sleeper shark captured on camera by a NOAA Okeanos mission.
Sleeper shark captured on camera by a NOAA Okeanos mission.

Whale falls can be broken up into different stages, each with their own group of animals. The first stage attracts crustaceans such as the squat lobster, hagfish, and large sharks like the sleeper shark. This stage may last anywhere from four months to two years. The second stage invites a variety of animals that live in the soil or on the bones, eating increasingly hard-to-digest material to make use of the rare appearance of nutritious food in the barren deep sea. This stage lasts about the same amount of time as phase one (months to years). In the third stage, species that use sulphide as an energy source instead of the sun, such as those found around hydrothermal vents, appear around the whale. Sulfide is a compound made of sulphur that builds up when bacteria are very active, and causes the rotten egg smell you may notice when passing a marsh. This phase may last from six years to decades.

The following video offers some great footage of a whale fall caught on camera by a deep-sea submersible:

Skeleton of a 35-ton, 13-m gray whale on the sea bottom. Ribbon-like animals are hagfish.
Skeleton of a 35-ton, 13-m gray whale on the sea bottom. Ribbon-like animals are hagfish.

Whale falls are notoriously hard to find, because the deep sea is so vastly large (139,000,000 square miles). When researchers find a whale fall, it is a big deal. When they find a whale fall in an ocean as remote as the Southern Ocean (the ocean surrounding Antarctica), it is an even bigger deal. In 2013 researchers found a whale fall near Antarctica, the first discovery of its kind. The Antarctic whale was home to nine species we had never seen before. As amazing as this discovery was, scientists that study whale falls do not have the time or money to comb the deep sea, so they take a shortcut- they sink beached whales, and monitor their progress over time. Researchers in Japan tracked 12 whale carcasses over three and a half years. In the Japanese whale experiments, two new species were discovered, one a lancelet (a primitive fish, and one of my favorite critters), and one a new species of bone-eating worm. If they continue to monitor the whale falls, it is possible they may find even more unique species. Even after three and a half years, there was still some blubber and tissue present, so the decomposition process was nowhere near complete and other groups of animals are still likely to move in.

While locating a whale fall is an extremely rare occurrence, that does not mean that whale falls are uncommon. By doing some quick math to calculate the number of whales estimated to be in the ocean, then factoring in the number that are likely to die in the next year or so (about 1%), as well as an estimate of how long it takes for a whale carcass to disappear (at least 6 years), you can give a reasonable estimate of the number of whale falls currently in the ocean (a little over 100,000 whale falls). Factoring in the total area of the ocean, that means one whale fall every 1,300 square miles. That seems like a lot of area to search for a whale fall. However, think of it this way. Say you are planning a trip across the Atlantic Ocean, and are taking a ship from New York to London (3,500 miles). While on the ship, your path line along the ocean floor is likely passing within one mile of about 10 whale falls. You may have been right on top of one of these unique communities, perhaps full of goblin sharks and deep-sea isopods, and never even knew.

This figure is a representation of the number of whale falls on the sea floor. It is not to-scale. All whale data was obtained from the International Whaling Commission or NOAA. The figure is for demonstrative purposes only, and is not intended to be used as scientific evidence. Calculations and figure by Cassandra Glaspie, 2014.
This figure is a representation of the number of whale falls on the sea floor. It is not to-scale. All whale data was obtained from the International Whaling Commission or NOAA. The figure is for demonstrative purposes only, and is not intended to be used as scientific evidence. Calculations and figure by Cassandra Glaspie, 2014.

For more information:

Amon, D.J., A.G. Glover, H. Wiklund, L. Marsh, K. Linse, A.D. Rogers, and J.T. Copley. 2013. The discovery or a natural whale fall in the Antarctic deep sea. Deep-Sea Research II 92:86-96.

Fujiwara, Y., M. Kawato, T. Yamamoto, T. Yamanaka, W. Sato-Okoshi, C. Noda, S. Tsuchida, T. Komai, S.S. Cubelio, T. Sasaki, K. Jacobsen, K. Kubokawa, K. Fujikura, T. Maruyama, Y. Furushima, K. Okoshi, H. Miyake, M. Miyazaki, Y. Nogi, A. Yatabe, and T. Okutani. 2007. Three-year investigations into sperm whale-fall ecosystems in Japan. Marine Ecology 28:219-232.

The king crab regains the throne

Red king crab at the Kodiak Lab. Photo by Cassandra Glaspie.
Red king crab at the Kodiak Lab. Photo by Cassandra Glaspie.

In 2008 I got the chance to travel to Kodiak, Alaska for an entire summer of research on the red king crab. Researchers were concerned that global change would threaten an economically important and thriving fishery around the Aleutian Islands. The poles are warming faster than anywhere else in the world. In addition, waters are gradually becoming more acidic in a process called ocean acidification, which is caused by increased uptake of carbon dioxide in ocean waters. Ocean acidification was my specific area of research as an intern in Kodiak. I was responsible for trying to figure out the effect of acidified water on the young life stages of the red king crab. The assumption was in this area of the world, global climate change would cause problems for this cold-water species of crab. However, that is not the assumption everywhere in the world.

This is what Antarctica would look like without ice. The light blue is the continental shelf, which quickly drops away (continental shelf) to deep ocean in dark blue. Image from BEDMAP Consortium/British Antarctic Survey.
This is what Antarctica would look like without ice. The light blue is the continental shelf, which quickly drops away (continental shelf) to deep ocean in dark blue. Image from BEDMAP Consortium/British Antarctic Survey.

Some species benefit from warming waters. A large part of the Antarctic continental shelf (or the shallow waters that fringe the land mass that is Antarctica), is off limits to many species because it is simply too cold. In very cold places like Antarctica, the water at the ocean’s surface is actually colder than the deep water because the air temperature cools the surface water. So in Antarctica, many species aren’t able to live and grow in the shallow waters, even though they are abundant in the deep water offshore of the continental shelf. This is the case for many species of large crabs with crushing claws, that are abundant in the colder waters near the North Pole and Alaska, like king crabs. King crabs are the crabs of “Deadliest Catch” fame.

Antarctic corals. Photo by Zapata-Guardiola y López-González.
Antarctic corals. Photo by Zapata-Guardiola y López-González.

The shallow waters of Antarctica have been too cold for crushing crabs for 14 million years. As far as crustaceans on the Antarctic continental shelf go, currently there are only five shrimp species that are able to survive in the colder, shallower waters around Antarctica. The absence of large crab predators is very important to the bottom-dwelling critters in Antarctica. Large crabs not only tear apart and crush prey they find while foraging on the ocean floor, they also produce gashes and holes in the surface of the mud at the bottom of the ocean. This is a lot of disturbance. Since the shallow waters of Antarctica have been free of many crab and fish predators for so long, they have developed some of the most diverse communities of starfish, corals, and mollusks found anywhere in the world. More than half of all the species found on the Antarctic shelf are endemic to the area, meaning they are found nowhere else in the world.

Antarctic snail Pleurotomella endeavourensis, reproduced courtesy of Museum of New Zealand Te Papa Tongarewa under a CC BY-NC-ND license.
Antarctic snail Pleurotomella endeavourensis, reproduced courtesy of Museum of New Zealand Te Papa Tongarewa under a CC BY-NC-ND license.

The animals that live on the floor of the Antarctic shelf have evolved to withstand fairly constant conditions, with not much disturbance. The major predators of the Antarctic shelf are slow-moving predators like starfish and urchins. That means the clams, snails, corals, and other invertebrates that live on the Antarctic shelf are relatively unprotected: thin-shelled, slow-moving, and non-toxic. Examples include thin, almost translucent snails; fragile, fleshy gorgonian corals; meaty, lumpy clams that divers can collect by hand; and white nudibranchs (shell-less snails) that do not collect poisons from their food like their coral reef-dwelling cousins. These animals would likely not do very well if a new, relatively quick predator with crushing claws and pointy, probing feet were introduced onto the continental shelf. Which, of course, is exactly what is happening.

Sea surface temperatures on the west Antarctic Peninsula have risen about 1° C since 1950. Observations made by deep-sea submersibles suggested that this temperature increase may have been enough to allow king crabs to move from the deep water surrounding the Antarctic continental shelf, up the slope, and closer to the continental shelf itself. A team of researchers traveled to Antarctica to document king crab presence on the slope, and to see how close the crabs were to reaching the shelf. This video summarizes what they found.

Two king crabs photographed in Palmer Deep. Photo by: Katrien Heirman, published in Smith et al. 2012.
Two king crabs photographed in Palmer Deep. Photo by: Katrien Heirman, published in Smith et al. 2012.

King crabs were spotted on the lower portion of the continental shelf. Crabs were seen actively consuming starfish and other bottom-dwelling animals, and diversity of other animals was reduced in areas where crabs were abundant. An additional survey of the Antarctic continental shelf in 2012 revealed populations of king crabs in the deeper portions of the shelf itself. In fact, a team of researchers recently discovered a healthy population in a deep basin called Palmer Deep, 120 km away from the slope, indicating that the crabs can cross the shelf already. The amount of crabs found in Palmer Deep is greater than the commercially exploited populations present in Alaska and South America (per unit area). In Palmer Deep, the researchers never saw evidence of the four species of starfish that should have been in the area. They did see an estimated 100-300 punctures and gashes in every one-meter section of seafloor mud the robot camera covered. Wherever researchers found crabs, they also found evidence of crabs changing their environment.

If the current range of king crab in Antarctica is any indicator, current trends in warming suggest that king crabs will be a common fixture on the continental shelf in 100-200 years. This has led researchers to claim that king crabs are invading the Antarctic continental shelf. Are these crabs really invading? The question is not whether crabs will really become more common on the continental shelf of Antarctica, because they most likely will, but whether the term “invasion” is the best word for what is happening in Antarctica. “Invasion” has a very specific meaning to ecologists. According to the International Union for the Conservation of Nature (IUCN), an invasive species is “an alien species which becomes established in natural or semi-natural ecosystems or habitat, is an agent of change, and threatens native biological diversity.” The uncertainty lies in the word “alien”, indicating the species comes from another place. It is difficult to tell how long crabs have been absent from the continental shelf. The fossil record is patchy at best, and scientists must rely on indirect cues, such as a fossil record of starfish that do not suffer from missing arms, which would have presumably been the case if crabs were around. Some would argue that lack of damage in fossilized starfish is not very reliable evidence. Are we just noticing more crabs on the shelf because we are spending more time looking? Have they been in Palmer Deep for much longer time than we expect?

Crabbing vessel in Kodiak, Alaska. Photo by Cassandra Glaspie.
Crabbing vessel in Kodiak, Alaska. Photo by Cassandra Glaspie.

Perhaps these crab species are undergoing a range expansion, driven by changing climate. This is expected to happen commonly around the world, as mobile animals such as fish gradually move to more suitable areas to follow changes in global climate. However, the range shift of king crabs may be more devastating for the ecosystem than a lot of other range shifts, because the Antarctic ecosystem has not experienced this kind of disturbance in many millions of years. King crabs will almost certainly be an agent of change, and a threat to biological diversity. The silver lining is that in this case, perhaps global change will create an economically important and thriving fishery for king crab on the continental shelf around Antarctica. With the remoteness of Antarctica, and the unstable weather conditions, it may be unlikely that such a fishery would ever attract investors or fisherman willing to take the risks. If it did, we better hope there will be a reality show, because this “Deadliest Catch” spinoff will be way more dangerous.

For more information:

Griffiths, H.J., R.J. Whittle, S.J. Roberts, M. Belchier, and K. Linse. 2013. Antarctic crabs: Invasion or endurance? PLOS One 8(7).

Smith, C.R., L.J. Grange, D.L. Honig, L. Naudts, B. Huber, L. Guidi, and E. Domack. 2012. A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts.

Sven, T., K. Anger, J.A. Calcagno, G.A. Lovrich, H. Pörtner, and W.E. Arntz. 2005. Challengin the cold: Crabs reconquer the Antarctic. Ecology 86(3):619-625. Proceedings of the Royal Society B 279:1017-1026.

Dr. Shipworm, Ph.D.

Bow section of a shipwreck visited by NOAA Okeanos Explorer on April 20, 2014. Image fromNOAA Okeanos Explorer Program, Gulf of Mexico 2014 Expedition.
Bow section of a shipwreck visited by NOAA Okeanos Explorer on April 20, 2014. Image fromNOAA Okeanos Explorer Program, Gulf of Mexico 2014 Expedition.

From April 17th 2014 through May 1st 2014, the National Oceanographic and Atmospheric Administration (NOAA) has brought together a team of scientists and engineers to explore the bottom of the Gulf of Mexico using their ship, the Okeanos Explorer, and their remotely operated underwater vehicle (ROV) named the Deep Discoverer. To the delight of science lovers across the nation, NOAA has been streaming live camera feed from their ROV for anyone to watch, greatly reducing the productivity of marine scientists and nautical archaeologists. On Thursday April 27th the Okeanos Explorer visited two shipwrecks in the Gulf of Mexico (click here to see the highlights). They discovered a variety of “encrusting biology” (animals that live on the hard structures of shipwrecks), archaeological treasures, and even the chronometer (timepiece) and the octant (a navigation device) of the early 19th century ship, which has led me to coin my new favorite phrase for use when facing impossible odds, “It’s like finding an octant in a shipwreck.”

If you watched the feed from the Monterey C shipwreck, you may have noticed one major thing missing from much of the ship’s debris field- wood. Since wood from a shipwreck is pretty much the only organic material in such a harsh environment as the deep sea, a lot of the wood from the ship had long since been eaten away by animals that feed on wood. Wood is not an easy thing to eat. It is full of fiber and difficult for the gut to break down. Even animals that have special guts for digesting plant matter, such as cows and other ruminants, cannot break down wood. In the ocean there is one fairly common critter that can eat wood. They are called shipworms.

Photo of a shipworm extracted from its burrow.
Photo of a shipworm extracted from its burrow.

Shipworms are not worms at all. They are actually bivalves, a name that comes from the latin class Bivalvia. All of the members of the class Bivalvia have two (bi) shells (valves) that are hinged. Examples would be clams, oysters, scallops, and mussels. However, shipworms do not look like clams at all. They look more like worms, with long, fleshy, cylindrical bodies. They use their shells not for protection, like a clam or oyster, but to bore through wood. They can be a few centimeters long, or as long as a meter depending on the species, and they live in the burrows that they carve out of wood. The wood shavings are also consumed as food. The shipworm uses substances called cellulases to break down the wood, allowing them to extract nutrition from the tough fiber. This ability allows shipworms to join only a few known species that are capable of digesting wood, including protists, fungi, bacteria and a handful of species in several different invertebrate groups, including termites.

Shipworm burrows in a piece of wood. Photo by Wilson44691 (Own work) [Public domain], via Wikimedia Commons
Shipworm burrows in a piece of wood. Photo by Wilson44691 (Own work) [Public domain]
Just as termites can cause problems for homeowners, shipworms can cause problems for people whose livelihoods depend on the sea. Shipworms are responsible for destroying ships and piers around the world. They also eat shipwrecks, which in many parts of the world are an important part of history and heritage. The shipworm’s tendency to nibble away at nautical history means they are mostly viewed as pests that need to be eradicated. There are a few marine environments in the world where shipworms are not found. One is the Antarctic, which is protected from shipworms by the circumpolar currents which act as a barrier to shipworm movement. The Baltic Sea, which is too fresh for shipworms to survive, has been protected from shipworm feeding in the past. This shipwreck oasis is now in trouble because recently shipworms have begun to invade the Baltic. An eradication program has begun to prevent the shipwrecks from becoming mollusk food.

Diagram of the tunnel shield used to build a tunnel under the Thames River.
Diagram of the tunnel shield used to build a tunnel under the Thames River.

I understand the need to protect historical wrecks. However, far from considering shipworms as a pest, I propose we celebrate the shipworm as a genius. In fact, I suggest we award the shipworm an honorary degree in engineering. Here’s why. The shipworm has played a major role in helping humans discover solutions to two major engineering problems over the last two hundred years. Have you ever wondered what it takes to make a tunnel under a river? I know I have. Turns out it is not easy. Tunnels in soft sediment, like the mud under a river, tend to collapse as they are built. In the early 1800s, Marc Isambard Brunel solved this problem with a little help from the shipworm. He observed a shipworm’s tunneling behavior. The shipworm bores through the wood and as it makes its tunnel, it encases the tunnel walls in shell material to prevent the wood from swelling, closing the tunnel and crushing the worm. Brunel designed a tunneling shield, which was an iron cylinder that was pushed further and further into the tunnel as it was excavated, preventing the walls from collapsing in on the workers. In this way he was able to make the first tunnel under the Thames River, and it was all thanks to the shipworm.

A field of Miscanthus (elephant grass) being grown for biofuel production. Photo by David Wright [CC-BY-SA-2.0 (http://creativecommons.org/licenses/by-sa/2.0)]
A field of Miscanthus (elephant grass) being grown for biofuel production. Photo by David Wright [CC-BY-SA-2.0 (http://creativecommons.org/licenses/by-sa/2.0)]
A more recent example of the shipworm’s prowess as an engineer is the quest for the fuel that will replace fossil fuels. The energy crisis has led us to look at biofuels, or fuels derived from living organisms, such as plants. The production of biofuels involves collecting sugars from plants and fermenting those sugars to make ethanol. However, plants store glucose in a tough fiber called cellulose. Getting the glucose out of cellulose is costly, making biofuel production from plants costly as well. A lot of recent biofuel research has aimed at reducing the costs associated with removing glucose from plant tissue. I am sure you can see where this is going. Shipworms have already solved this problem by developing an association with bacteria that live in shipworm gills and digest cellulose. In fact, some shipworms appear to live off of wood alone, and do not grow any faster when provided with extra food. These bacteria are being cultured for use in biofuel production. Perhaps in a few years the shipworm will have helped us solve another complicated engineering problem, improving human lives.

Is the shipworm an irritant or an inspiration? Shipworms have experienced an interesting evolutionary path to fill a unique niche, and they have developed the ability to eat a substance that is extremely abundant, but useless as a food source for the vast majority of other animals. This path has unfortunately led the shipworm to torment ship-owners and owners of waterfront property. It has also led to some of the most amazing achievements in engineering in the last two hundred years. This is the reason I think the shipworm deserves an honorary degree in engineering, and I hope this interesting animal will continue to inspire the great thinkers of my generation as we tackle increasingly difficult environmental issues.

For more information:

Honein, K., G. Kaneko, I. Katsuyama, M. Matsumoto, Y. Kawashima, M. Yamada, and S. Watanabe. 2012. Studies on the cellulose-degrading system in a shipworm and its potential applications. Energy Procedia 18:1271-1274.

Asfa-Wossen, L. 2012. Tunnel vision. Materials World, 20(5):10.

Tanimura, A., W. Liu, K. Yamada, T. Kishida, and H. Toyohara. 2013. Animal cellulases with a focus on aquatic invertebrates. Fisheries Science 79:1-13.

Miller, R.C., and L.C. Boynton. 1926. Digestion of wood by the shipworm. Science 63(1638):524

Gregory, D. 2010. Shipworm invading the Baltic? The Nautical Archaeology Society 431.

A day in the life

Drawing from original draw-a-scientist study in 1983. Photo By Yewhoenter (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
Drawing from original draw-a-scientist study in 1983. Photo By Yewhoenter (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
At the beginning of my graduate school career I remember sitting in on a seminar about a recent program implemented by several students called “draw a scientist”. Students involved in a GK-12 program, where graduate students bring science to middle school and high school classrooms, were asked to draw their version of a scientist. In the drawings, crazy hair, flasks, and lab coats were a common element. Students described their scientists using adjectives like smart, crazy, chemicals, mixing, nerd, weird, lab coat, old, lab work, hard-working, and cool. At that age, I probably would have drawn the same thing, except my scientist would have been female, and I would have most definitely included the word “cool” in my description. However, my experience as a scientist has not led me to don a lab coat very often. I have held a few jobs that included pristine labs with white, crisp coats and flasks, but more often than not, I am wearing muddy waders, hiking boots, or dive suits.

Fishing for crabs on the York River.
Fishing for crabs on the York River.

I am a marine scientist, and I study the interactions between animals that live in the ocean. Right now I am studying predator-prey interactions in the Chesapeake Bay, which is not exactly the ocean but it is pretty salty. It is an estuary, where the rivers from the land meet the ocean and a mix of fresh and salt water occurs. The Chesapeake Bay is home to many species found in the Atlantic, as well as some that are only found in estuaries. I am focusing my research on two predators, the blue crab and the cownose ray, and a few of their prey species, including the soft-shell clam (steamers in New England), hard clams (or quahogs), razor clams (often used as bait), mussels, and Eastern oysters. My research is attempting to answer the question, how will these predator-prey interactions change in the future as climate change impacts the Chesapeake Bay in various ways?

Scientists never really prove anything; they can only provide supporting evidence for a phenomenon, and as the amount of evidence grows, so does the scientist’s confidence that their answer is correct. Thus my research project that I am completing for my PhD will collect a variety of evidence to answer my research question. I have to look at the problem in a number of different ways, using not only experiments in the laboratory, but also observations and experiments from the Chesapeake Bay itself, and predictions from mathematical models. That is why getting an advanced degree in science takes so long and involves so much work. Scientists-in-training are learning how to build a body of evidence to try and answer a research question. When completed, my dissertation will consist of four different chapters which summarize eight (or more) research projects, all designed to provide some evidence pointing towards the answer of my research question. In the end I still won’t have an answer; just a starting point and a hundred more questions. Remember, science is a journey.

IMGP6708
Suction sampling using a large pump to collect clams.

So what do I actually do? In the summer I go out on some rivers that feed into the Chesapeake Bay, like the York River, in a small boat and collect samples in shallow water. Most of my samples are suction samples. To take these samples I use a large pump that works as an underwater vacuum, allowing me to vacuum up the mud and sand on the bottom of the river. I use these samples to understand how many clams are in an area. I also tow nets behind the boat to collect fish and crabs (the predators in the area), and snorkel along a 50 m rope laid out on the bottom of the shallow parts of the river to count the pits that rays make when they feed. This is a much easier way to figure out how many rays are in an area than actually catching the rays.

Photo from a clear-water day in the Chesapeake Bay.
Photo from a clear-water day in the Chesapeake Bay.

The water is mostly muddy but every so often, when the conditions are right, I feel like I am snorkeling in the tropics. Those are the best days, when I get to see vast expanses of seagrass, the terrapins (a type of swimming turtle that gets about the size of a dinner plate) swim next to me, and I can see all of the little clams and worms on the river bottom going about their business, excavating burrows and spewing out streams of mud that look like something that comes out of a Play-Doh pasta factory. But most days I can only see about a foot in front of my face, and the view is frequently obstructed by translucent jellyfish tentacles that appear too late for any sort of evasive maneuver, and the resultant burning pain is just treated as part of the overall experience. Hey, it could be worse. We could be in our office.

For the rest of the year I devote my time to a number of activities. These include sorting through the suction samples to pick out the clams, holding an active leadership role in graduate student government, keeping up to date on the latest science discoveries in my field, fulfilling my current funding requirements (this year, I was a guest scientist in a 7th grade classroom for a couple of days every week), writing grant proposals to fund my education next year, writing reports (and soon my own scientific articles to be published in a journal), and working on a project in the seawater laboratory (see video).

I visit the seawater laboratory every day of the week, devotedly, except for Sunday. All of my critters (blue crabs, clams, mussels, and oysters) seem to behave on Sunday. However, if I fail to visit any other day of the week, disaster abounds. I return to rampant cannibalism (in the blue crab tank, of course), escapees, clogged plumbing, leaky ceilings, broken water heaters, overflowing tanks, you name it. For a while I was convinced that the brand-new seawater laboratory was haunted. Now I know that this is just one of the things that makes ecology so interesting and exciting. Since I am always working with live critters, things never really go as planned. I have spent most of my time in graduate school anticipating the evil intentions of invertebrates, some of which don’t even have brains. As a result I have had many chances to exercise creative, out-of-the-box thinking, and when I fail, the consequences are usually pretty hilarious.

I mark clams with marker before placing them in the river, so if I get them back I know they are from my experiment.
I mark clams with marker before placing them in the river, so if I get them back I know they are from my experiment.

For instance, last summer I was running an experiment in several tanks where crabs were offered clams for food. There were various scenarios that made it harder to get at the food (i.e. clams were hidden underneath a layer of shell), and crabs are lazy, so it shouldn’t surprise me that the crab starring in this story had had enough, and was ready to strike out on his own to find a more promising food source. Despite precautions to prevent this type of thing from happening, the crab climbed out of the tank and into an adjacent tank. This rarely happens; the tanks are round and only overlap for a small portion, but in this case the crab was on a mission and the result certainly paid off. The day before I spent 8 hours with a volunteer painstakingly marking clams and placing them in containers to be deployed in the York River the next week. The crab had discovered a buffet of epic proportions, and the next day  I arrived in the lab to find shell splinters and an extremely well-fed blue crab.

Catching a carp for fun while on the job.
Catching a carp for fun while on the job.

My experiences may not be typical of the average scientist, but I would argue that white lab coats are not typical of the average scientist, either. Scientists are just as likely to be “outdoorsy” as they are likely to be holding chemicals over a Bunsen burner. Programs like GK-12, sponsored by the National Science Foundation, help to inspire the next generation of scientists and to change the way people think of scientists. As a result these programs produce a more diversified next generation of scientists, and hopefully increase public trust in science programs. This is especially important because public trust in scientists is very low. This should be very concerning for scientists, a group of people who base their lives and careers on a quest for truth.

Not-so-streamlined science

Longhorn cowfish. Photo courtesy of H. Zell (Own work) (http://www.gnu.org/copyleft/fdl.html)
Longhorn cowfish. Photo by H. Zell (Own work) (http://www.gnu.org/copyleft/fdl.html)

Welcome to the Cowfish Blog! You may have heard of a cowfish before, or maybe not, but two things are certain- cowfish are REAL and they look strange compared to most fish. I figured I would introduce my mascot in this first post, and in doing so tell you a little bit about this blog, and science in general. So first, let me introduce my guest of honor, the cowfish.

You may notice a couple of things about the cowfish that stand out as strange. It is shaped like a box. That boxy shape is made of bone, which makes the cowfish much larger than would be necessary to simply contain its innards. This makes the cowfish, which tops out at about 20 inches in length, one of the largest fish around on the coral reefs, where it makes its home. That is excluding the sharks. And the groupers. In any case, it is large, which means it is noticeable if you go snorkeling in the Indopacific, especially because it is bright yellow. Its coloration makes it stand out to tourists, and also to predators. The cowfish doesn’t have to worry about standing out to predators because it has a couple of ways to defend itself. First, it has horns. These horns make it too large to fit in the mouths of most fish, which means only very large predators can hope to make a meal of a cowfish. Second, it is toxic. When a cowfish feels threatened it secrets poison from its skin, and this poison is very dangerous to other fish. This means that a shark that bites down on a cowfish might seriously regret the meal. Cowfish poisoning will first cause disorientation and erratic movements, then coma, then death. It is even toxic to mammals, though it takes a lot of toxin to affect humans. Cowfish toxin can have an indirect effect on humans that keep fish in aquaria, and have a sick cowfish kill an entire tank of fish in a night. Speaking from experience, of course.

Front view of a longhorn cowfish. Photo courtesy of I, Drow male GFDL (http://www.gnu.org/copyleft/fdl.html)
Front view of a longhorn cowfish. Photo by I, Drow male GFDL (http://www.gnu.org/copyleft/fdl.html)

I think most people would agree that a cowfish looks like a very slow swimmer. In fact, cowfish are fairly fast swimmers that can swim long distances using little energy and with great stability. They swim using movements from their fins only, since they can’t bend their bodies. At slow speeds the tail is used for steering, like a rudder. Their body shape can automatically correct any tips and dips that happen when waves sweep over the coral reefs on which they live. That is because all of the edges of a cowfish’s boxy frame stick out in a flat plate similar to the keel of a boat. Boat keels are designed to keep the ship stable in the water and to help prevent it from tipping over, and a cowfish keel works the same way. In addition to providing stability, all of the protrusions on the cowfish’s body interrupt water flow from pretty much any direction and push the water away from the cowfish, making for a smooth ride. This is similar to what happens to a delta wing aircraft in flight. Delta wing aircraft are designed for maneuverability, and so, it seems, are cowfish. Cowfish can turn on a dime and swim upside down, which are adaptations that allow them to explore all of the hiding places in a coral reef. As I mentioned, cowfish are also extremely enregy efficient swimmers. Boxfish (a relative of the cowfish) use about as much energy while swimming as a sockeye salmon, a fish built for traveling long distances. In fact, cowfish swimming is more efficient (at pretty much all speeds) than the smallmouth buffalo fish, a carp that lives in the Mississippi River and has a much more typical fish shape.

Mercedes-Benz Bionic. Photo courtesy of NatiSythen (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
Mercedes-Benz Bionic. Photo by NatiSythen (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
The cowfish body design is so efficient that engineers often turn to the cowfish for inspiration. One application of the cowfish body shape could be a more energy-efficient design for a stable underwater vehicle. DaimlerChrysler AG actually designed a concept car based on the body shape of the cowfish and its relatives. This car, called the Mercedes-Benz Bionic, was introduced as a highly energy-efficient vehicle in 2005. It can go from 0-60 mph in 8 seconds, which is 0.1 seconds LESS than the Jaguar S Type 2.7d V6 Sport introduced in 2004. Clearly there is a lot that can be learned from the cowfish.

Illustrations of cowfish by Ernst Haeckel, 1904.
Illustrations of cowfish by Ernst Haeckel, 1904.

One thing we often don’t think about (or maybe you do, in which case you MAY be a biologist) is how did the cowfish get this way? Over evolutionary time (we are talking hundreds of millions of years) fish are exposed to different pressures that they must be able to survive in order to persist as a species. These include predators, finding food, finding mates, and a variety of other things. So which of these pressures caused the cowfish to look the way it does, and why did it respond to these pressures differently from every other fish? Certainly other fish can avoid predators by hiding or using camouflage, and it seems like the cowfish sure wastes a lot of energy developing its bony armor and toxins when it could have just covered itself in camo. There are plenty of other fish on the reef that are masters of maneuverability, such as the wrasse, and these fish don’t have to build up a boxy shape to accomplish amazing feats of hydrodynamics. So what caused the cowfish’s ancestors to develop its unique shape, horns, and toxins? Perhaps we will never know, but we can imagine that the route from a normal fish-shape to the shape of my most recent Amazon delivery was probably not a direct one. If it was, we would likely see it a lot more often in the animal world. I, for one, am glad that the cowfish’s ancestors took such a circuitous route to become the unique species it is today, not only because I appreciate cowfish for their adorable appearance, but also because I look forward to the day when I can travel underwater in a submarine built like a cowfish. Which may or may not be yellow. But I really hope it is yellow.

This leads me to the reason for naming my blog after the cowfish. The cowfish embodies many of the reasons why I love science. Science is weird and full of questions. You can spend your entire life as a scientist asking and attempting to answer questions. However the answers, when you do get them, are usually not direct, much like the evolution of the cowfish. As a result the quest for answers is a journey that leads the scientist to strange and interesting places. The end is something you probably never expected, but it is also immensely more interesting than you expected. I love that about science, and I love that about the cowfish. So stay tuned for some more not-so-streamlined science- my experiences as a marine scientist, and interesting tidbits about science and the natural world.

 

For more information:

Bartol, I.K., M.S. Gordon, M. Gharib, J.R. Hove, P.W. Webb, and D. Weihs. 2002. Flow patterns around the carapaces of rigid-bodied, multi-propulsor boxfishes (Teleostei: Ostraciidae). Integrative and Comparative Biology 42:971-980.

Thomson, D.A. 1964. Osctacitoxin: An ichthyotoxic stress secretion of the boxfish, Ostracion lentiginosus. Science 146(3641):244-245.

Gordon, M.S., J.R. Hove, P.W. Webb, and D. Weihs. 2000. Boxfishes as unusually well-controlled autonomous underwater vehicles. Physiological and Biochemical Zoology 73(6):663-671.

Bartol, I.K., M. Gharib, P.W. Webb, D. Weihs, and M.S. Gordon. 2005. Body-induced vertical flows: A common mechanism for self-corrective trimming control in boxfishes. The Journal of Experimental Biology 208:327-344.